Exam Statistical Genomics

Date: Thursday 30 January, 2014

Time: 9.00-12.00

Place: Bernoulliborg Building, Room 5161.0222

Progress code: WISG-09

Rules to follow:

• The number of points per question are indicated within a box. Ten points are free.

• Do not forget to fill in your name and student number.

• We wish you success with the completion of the exam!

START OF EXAM

- 1. Kullback-Leibler divergence, likelihood and deviance. 20 The Kullback-Leibler divergence is defined as $I(f;g) = E_f \log \frac{f(X)}{g(X)}$. We consider a graphical log-linear model. Let n be a table of counts, where n(x) is a particular cell-count. Let $N = \sum_x n(x)$ be the total number of observations.
 - $\boxed{10}$ Show that the log-likelihood for a table n can be written as

$$l(p;n) = l(\frac{n}{N};n) - N \times I(\frac{n}{N};p),$$

where p and n/N are interpreted as cell probabilities.

• 10 Consider a particular graphical log-linear model M. Show that the deviance can be written as

$$Dev(M) = 2\sum_{x} n(x) \log \frac{n(x)/N}{\hat{p}^{M}(x)},$$

where \hat{p}^M is the maximum likelihood estimator for p under M.

2. Binary log-linear model. 35

We study the three year survival (X_3) of 474 breast cancer patients according to nuclear grade (X_2) and diagnostic centre (X_1) .

- (a) 5 Derive the MLE of $p(X_1 = 1, X_2 = 1, X_3 = 1)$ under the saturated model.
- (b) $\boxed{5}$ Derive the MLE of $p(X_1=1,X_2=1,X_3=1)$ under the model 1.2+1.3.

1

	X_2	=0	X_2		
~	$X_3=0$	$X_3 = 1$	$X_3 = 0$	$X_3 = 1$	
$X_1 = 0$.35	59	<i>A</i> 7	112	253
$X_1 = 1$	42.	(77)	26	(76)	221
total	77	136	73	188	474

- (c) $\boxed{10}$ We can decompose the log-density $\log p$ in a log-linear way using u-terms. Derive the MLE of the u_1 term under the model 1.2 + 1.3.
- (d) 10 We want to test whether we can exclude the link (2,3) from the saturated model. Determine the edge exclusion deviance and test whether you can delete it at a 5% significance level. A chi-squared table can be found at the end of the exam.
- (e) $\boxed{5}$ Argue whether the model 1.2 + 1.3 + 2.3 is graphical and/or hierarchical.

3. Gaussian graphical model (1). 15

The sample variance matrix based on $\overline{N} = 50$ observations from a Gaussian graphical model is

Calculate the following 3 elements of the MLE of the variance covariance matrix Σ associated with the following conditional independence graph:

- (a) $\boxed{5} \hat{\Sigma}_{12}$?
 - (b) $5 \hat{\Sigma}_{13}$?
 - (c) $[5] \hat{\Sigma}_{17}$?

4. Gaussian graphical model (2). 20

A sample covariance matrix for a sample from a Gaussian graphical model N(0, V) of size N = 10 is given as

$$S = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

(a) 10 Use the deviance $Dev(M_1)$ for $M_1 = X_3 \perp (X_2, X_1)$ to test whether M_1 fits the data.

Hint: You can use the fact that |S| = 4 and that the determinant of the top submatrix of S is $|S_{12,12}| = 3$. Moreover, the inverse of a 2×2 matrix, is given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}.$$

(b) 10 Use (for example) the fact that

$$Inf(X_3 \perp X_2 | X_1) = -\frac{1}{2} \log \frac{|V| |V_{11}|}{|V_{12,12}| |V_{13,13}|}$$

to calculate the deviance $\mathrm{Dev}(M_2)$ for $M_2=X_3\perp X_2|X_1$ to test whether M_2 fits the data.

If you want to use directly the edge exclusion deviance, then that's fine too.

END OF EXAM

Chi-squared table.

-								
$\nu \setminus \alpha$	0.995	0.99	0.975	0.95	0.05	0.025	0.01	0.005
1	0.000	0.000	0.001	0.004	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	9.488	11.143	13.277	14.860

Table 1: Values of $\chi^2_{\alpha,\nu}$: entries correspond to values of x, such that $P(\chi^2_{\nu} > x) = \alpha$, where χ^2_{ν} correspond to a chi-squared distributed variable with ν degrees of freedom.